Eneboo - Documentación para desarrolladores
|
00001 /*------------------------------------------------------------------------- 00002 * 00003 * execnodes.h 00004 * definitions for executor state nodes 00005 * 00006 * 00007 * Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group 00008 * Portions Copyright (c) 1994, Regents of the University of California 00009 * 00010 * $PostgreSQL: pgsql/src/include/nodes/execnodes.h,v 1.139.2.3 2005/11/28 23:46:25 tgl Exp $ 00011 * 00012 *------------------------------------------------------------------------- 00013 */ 00014 #ifndef EXECNODES_H 00015 #define EXECNODES_H 00016 00017 #include "access/relscan.h" 00018 #include "executor/tuptable.h" 00019 #include "fmgr.h" 00020 #include "nodes/bitmapset.h" 00021 #include "nodes/params.h" 00022 #include "nodes/plannodes.h" 00023 #include "nodes/tidbitmap.h" 00024 #include "utils/hsearch.h" 00025 #include "utils/tuplestore.h" 00026 00027 00028 /* ---------------- 00029 * IndexInfo information 00030 * 00031 * this struct holds the information needed to construct new index 00032 * entries for a particular index. Used for both index_build and 00033 * retail creation of index entries. 00034 * 00035 * NumIndexAttrs number of columns in this index 00036 * KeyAttrNumbers underlying-rel attribute numbers used as keys 00037 * (zeroes indicate expressions) 00038 * Expressions expr trees for expression entries, or NIL if none 00039 * ExpressionsState exec state for expressions, or NIL if none 00040 * Predicate partial-index predicate, or NIL if none 00041 * PredicateState exec state for predicate, or NIL if none 00042 * Unique is it a unique index? 00043 * ---------------- 00044 */ 00045 typedef struct IndexInfo 00046 { 00047 NodeTag type; 00048 int ii_NumIndexAttrs; 00049 AttrNumber ii_KeyAttrNumbers[INDEX_MAX_KEYS]; 00050 List *ii_Expressions; /* list of Expr */ 00051 List *ii_ExpressionsState; /* list of ExprState */ 00052 List *ii_Predicate; /* list of Expr */ 00053 List *ii_PredicateState; /* list of ExprState */ 00054 bool ii_Unique; 00055 } IndexInfo; 00056 00057 /* ---------------- 00058 * ExprContext_CB 00059 * 00060 * List of callbacks to be called at ExprContext shutdown. 00061 * ---------------- 00062 */ 00063 typedef void (*ExprContextCallbackFunction) (Datum arg); 00064 00065 typedef struct ExprContext_CB 00066 { 00067 struct ExprContext_CB *next; 00068 ExprContextCallbackFunction function; 00069 Datum arg; 00070 } ExprContext_CB; 00071 00072 /* ---------------- 00073 * ExprContext 00074 * 00075 * This class holds the "current context" information 00076 * needed to evaluate expressions for doing tuple qualifications 00077 * and tuple projections. For example, if an expression refers 00078 * to an attribute in the current inner tuple then we need to know 00079 * what the current inner tuple is and so we look at the expression 00080 * context. 00081 * 00082 * There are two memory contexts associated with an ExprContext: 00083 * * ecxt_per_query_memory is a query-lifespan context, typically the same 00084 * context the ExprContext node itself is allocated in. This context 00085 * can be used for purposes such as storing function call cache info. 00086 * * ecxt_per_tuple_memory is a short-term context for expression results. 00087 * As the name suggests, it will typically be reset once per tuple, 00088 * before we begin to evaluate expressions for that tuple. Each 00089 * ExprContext normally has its very own per-tuple memory context. 00090 * 00091 * CurrentMemoryContext should be set to ecxt_per_tuple_memory before 00092 * calling ExecEvalExpr() --- see ExecEvalExprSwitchContext(). 00093 * ---------------- 00094 */ 00095 typedef struct ExprContext 00096 { 00097 NodeTag type; 00098 00099 /* Tuples that Var nodes in expression may refer to */ 00100 TupleTableSlot *ecxt_scantuple; 00101 TupleTableSlot *ecxt_innertuple; 00102 TupleTableSlot *ecxt_outertuple; 00103 00104 /* Memory contexts for expression evaluation --- see notes above */ 00105 MemoryContext ecxt_per_query_memory; 00106 MemoryContext ecxt_per_tuple_memory; 00107 00108 /* Values to substitute for Param nodes in expression */ 00109 ParamExecData *ecxt_param_exec_vals; /* for PARAM_EXEC params */ 00110 ParamListInfo ecxt_param_list_info; /* for other param types */ 00111 00112 /* Values to substitute for Aggref nodes in expression */ 00113 Datum *ecxt_aggvalues; /* precomputed values for Aggref nodes */ 00114 bool *ecxt_aggnulls; /* null flags for Aggref nodes */ 00115 00116 /* Value to substitute for CaseTestExpr nodes in expression */ 00117 Datum caseValue_datum; 00118 bool caseValue_isNull; 00119 00120 /* Value to substitute for CoerceToDomainValue nodes in expression */ 00121 Datum domainValue_datum; 00122 bool domainValue_isNull; 00123 00124 /* Link to containing EState */ 00125 struct EState *ecxt_estate; 00126 00127 /* Functions to call back when ExprContext is shut down */ 00128 ExprContext_CB *ecxt_callbacks; 00129 } ExprContext; 00130 00131 /* 00132 * Set-result status returned by ExecEvalExpr() 00133 */ 00134 typedef enum 00135 { 00136 ExprSingleResult, /* expression does not return a set */ 00137 ExprMultipleResult, /* this result is an element of a set */ 00138 ExprEndResult /* there are no more elements in the set */ 00139 } ExprDoneCond; 00140 00141 /* 00142 * Return modes for functions returning sets. Note values must be chosen 00143 * as separate bits so that a bitmask can be formed to indicate supported 00144 * modes. 00145 */ 00146 typedef enum 00147 { 00148 SFRM_ValuePerCall = 0x01, /* one value returned per call */ 00149 SFRM_Materialize = 0x02 /* result set instantiated in Tuplestore */ 00150 } SetFunctionReturnMode; 00151 00152 /* 00153 * When calling a function that might return a set (multiple rows), 00154 * a node of this type is passed as fcinfo->resultinfo to allow 00155 * return status to be passed back. A function returning set should 00156 * raise an error if no such resultinfo is provided. 00157 */ 00158 typedef struct ReturnSetInfo 00159 { 00160 NodeTag type; 00161 /* values set by caller: */ 00162 ExprContext *econtext; /* context function is being called in */ 00163 TupleDesc expectedDesc; /* tuple descriptor expected by caller */ 00164 int allowedModes; /* bitmask: return modes caller can handle */ 00165 /* result status from function (but pre-initialized by caller): */ 00166 SetFunctionReturnMode returnMode; /* actual return mode */ 00167 ExprDoneCond isDone; /* status for ValuePerCall mode */ 00168 /* fields filled by function in Materialize return mode: */ 00169 Tuplestorestate *setResult; /* holds the complete returned tuple set */ 00170 TupleDesc setDesc; /* actual descriptor for returned tuples */ 00171 } ReturnSetInfo; 00172 00173 /* ---------------- 00174 * ProjectionInfo node information 00175 * 00176 * This is all the information needed to perform projections --- 00177 * that is, form new tuples by evaluation of targetlist expressions. 00178 * Nodes which need to do projections create one of these. 00179 * 00180 * ExecProject() evaluates the tlist, forms a tuple, and stores it 00181 * in the given slot. Note that the result will be a "virtual" tuple 00182 * unless ExecMaterializeSlot() is then called to force it to be 00183 * converted to a physical tuple. The slot must have a tupledesc 00184 * that matches the output of the tlist! 00185 * 00186 * The planner very often produces tlists that consist entirely of 00187 * simple Var references (lower levels of a plan tree almost always 00188 * look like that). So we have an optimization to handle that case 00189 * with minimum overhead. 00190 * 00191 * targetlist target list for projection 00192 * exprContext expression context in which to evaluate targetlist 00193 * slot slot to place projection result in 00194 * itemIsDone workspace for ExecProject 00195 * isVarList TRUE if simple-Var-list optimization applies 00196 * varSlotOffsets array indicating which slot each simple Var is from 00197 * varNumbers array indicating attr numbers of simple Vars 00198 * lastInnerVar highest attnum from inner tuple slot (0 if none) 00199 * lastOuterVar highest attnum from outer tuple slot (0 if none) 00200 * lastScanVar highest attnum from scan tuple slot (0 if none) 00201 * ---------------- 00202 */ 00203 typedef struct ProjectionInfo 00204 { 00205 NodeTag type; 00206 List *pi_targetlist; 00207 ExprContext *pi_exprContext; 00208 TupleTableSlot *pi_slot; 00209 ExprDoneCond *pi_itemIsDone; 00210 bool pi_isVarList; 00211 int *pi_varSlotOffsets; 00212 int *pi_varNumbers; 00213 int pi_lastInnerVar; 00214 int pi_lastOuterVar; 00215 int pi_lastScanVar; 00216 } ProjectionInfo; 00217 00218 /* ---------------- 00219 * JunkFilter 00220 * 00221 * This class is used to store information regarding junk attributes. 00222 * A junk attribute is an attribute in a tuple that is needed only for 00223 * storing intermediate information in the executor, and does not belong 00224 * in emitted tuples. For example, when we do an UPDATE query, 00225 * the planner adds a "junk" entry to the targetlist so that the tuples 00226 * returned to ExecutePlan() contain an extra attribute: the ctid of 00227 * the tuple to be updated. This is needed to do the update, but we 00228 * don't want the ctid to be part of the stored new tuple! So, we 00229 * apply a "junk filter" to remove the junk attributes and form the 00230 * real output tuple. 00231 * 00232 * targetList: the original target list (including junk attributes). 00233 * cleanTupType: the tuple descriptor for the "clean" tuple (with 00234 * junk attributes removed). 00235 * cleanMap: A map with the correspondence between the non-junk 00236 * attribute numbers of the "original" tuple and the 00237 * attribute numbers of the "clean" tuple. 00238 * resultSlot: tuple slot used to hold cleaned tuple. 00239 * ---------------- 00240 */ 00241 typedef struct JunkFilter 00242 { 00243 NodeTag type; 00244 List *jf_targetList; 00245 TupleDesc jf_cleanTupType; 00246 AttrNumber *jf_cleanMap; 00247 TupleTableSlot *jf_resultSlot; 00248 } JunkFilter; 00249 00250 /* ---------------- 00251 * ResultRelInfo information 00252 * 00253 * Whenever we update an existing relation, we have to 00254 * update indices on the relation, and perhaps also fire triggers. 00255 * The ResultRelInfo class is used to hold all the information needed 00256 * about a result relation, including indices.. -cim 10/15/89 00257 * 00258 * RangeTableIndex result relation's range table index 00259 * RelationDesc relation descriptor for result relation 00260 * NumIndices # of indices existing on result relation 00261 * IndexRelationDescs array of relation descriptors for indices 00262 * IndexRelationInfo array of key/attr info for indices 00263 * TrigDesc triggers to be fired, if any 00264 * TrigFunctions cached lookup info for trigger functions 00265 * TrigInstrument optional runtime measurements for triggers 00266 * ConstraintExprs array of constraint-checking expr states 00267 * junkFilter for removing junk attributes from tuples 00268 * ---------------- 00269 */ 00270 typedef struct ResultRelInfo 00271 { 00272 NodeTag type; 00273 Index ri_RangeTableIndex; 00274 Relation ri_RelationDesc; 00275 int ri_NumIndices; 00276 RelationPtr ri_IndexRelationDescs; 00277 IndexInfo **ri_IndexRelationInfo; 00278 TriggerDesc *ri_TrigDesc; 00279 FmgrInfo *ri_TrigFunctions; 00280 struct Instrumentation *ri_TrigInstrument; 00281 List **ri_ConstraintExprs; 00282 JunkFilter *ri_junkFilter; 00283 } ResultRelInfo; 00284 00285 /* ---------------- 00286 * EState information 00287 * 00288 * Master working state for an Executor invocation 00289 * ---------------- 00290 */ 00291 typedef struct EState 00292 { 00293 NodeTag type; 00294 00295 /* Basic state for all query types: */ 00296 ScanDirection es_direction; /* current scan direction */ 00297 Snapshot es_snapshot; /* time qual to use */ 00298 Snapshot es_crosscheck_snapshot; /* crosscheck time qual for RI */ 00299 List *es_range_table; /* List of RangeTableEntrys */ 00300 00301 /* Info about target table for insert/update/delete queries: */ 00302 ResultRelInfo *es_result_relations; /* array of ResultRelInfos */ 00303 int es_num_result_relations; /* length of array */ 00304 ResultRelInfo *es_result_relation_info; /* currently active array elt */ 00305 JunkFilter *es_junkFilter; /* currently active junk filter */ 00306 00307 Relation es_into_relation_descriptor; /* for SELECT INTO */ 00308 bool es_into_relation_use_wal; 00309 00310 /* Parameter info: */ 00311 ParamListInfo es_param_list_info; /* values of external params */ 00312 ParamExecData *es_param_exec_vals; /* values of internal params */ 00313 00314 /* Other working state: */ 00315 MemoryContext es_query_cxt; /* per-query context in which EState lives */ 00316 00317 TupleTable es_tupleTable; /* Array of TupleTableSlots */ 00318 00319 uint32 es_processed; /* # of tuples processed */ 00320 Oid es_lastoid; /* last oid processed (by INSERT) */ 00321 List *es_rowMarks; /* not good place, but there is no other */ 00322 bool es_forUpdate; /* true = FOR UPDATE, false = FOR SHARE */ 00323 bool es_rowNoWait; /* FOR UPDATE/SHARE NOWAIT option */ 00324 00325 bool es_instrument; /* true requests runtime instrumentation */ 00326 bool es_select_into; /* true if doing SELECT INTO */ 00327 bool es_into_oids; /* true to generate OIDs in SELECT INTO */ 00328 00329 List *es_exprcontexts; /* List of ExprContexts within EState */ 00330 00331 /* 00332 * this ExprContext is for per-output-tuple operations, such as constraint 00333 * checks and index-value computations. It will be reset for each output 00334 * tuple. Note that it will be created only if needed. 00335 */ 00336 ExprContext *es_per_tuple_exprcontext; 00337 00338 /* Below is to re-evaluate plan qual in READ COMMITTED mode */ 00339 Plan *es_topPlan; /* link to top of plan tree */ 00340 struct evalPlanQual *es_evalPlanQual; /* chain of PlanQual states */ 00341 bool *es_evTupleNull; /* local array of EPQ status */ 00342 HeapTuple *es_evTuple; /* shared array of EPQ substitute tuples */ 00343 bool es_useEvalPlan; /* evaluating EPQ tuples? */ 00344 00345 /* 00346 * this field added at end of struct to avoid post-release ABI breakage in 00347 * 8.1 series. It'll be in a more logical place in 8.2. 00348 */ 00349 TupleTableSlot *es_trig_tuple_slot; /* for trigger output tuples */ 00350 } EState; 00351 00352 00353 /* ---------------------------------------------------------------- 00354 * Tuple Hash Tables 00355 * 00356 * All-in-memory tuple hash tables are used for a number of purposes. 00357 * ---------------------------------------------------------------- 00358 */ 00359 typedef struct TupleHashEntryData *TupleHashEntry; 00360 typedef struct TupleHashTableData *TupleHashTable; 00361 00362 typedef struct TupleHashEntryData 00363 { 00364 /* firstTuple must be the first field in this struct! */ 00365 HeapTuple firstTuple; /* copy of first tuple in this group */ 00366 /* there may be additional data beyond the end of this struct */ 00367 } TupleHashEntryData; /* VARIABLE LENGTH STRUCT */ 00368 00369 typedef struct TupleHashTableData 00370 { 00371 HTAB *hashtab; /* underlying dynahash table */ 00372 int numCols; /* number of columns in lookup key */ 00373 AttrNumber *keyColIdx; /* attr numbers of key columns */ 00374 FmgrInfo *eqfunctions; /* lookup data for comparison functions */ 00375 FmgrInfo *hashfunctions; /* lookup data for hash functions */ 00376 MemoryContext tablecxt; /* memory context containing table */ 00377 MemoryContext tempcxt; /* context for function evaluations */ 00378 Size entrysize; /* actual size to make each hash entry */ 00379 TupleTableSlot *tableslot; /* slot for referencing table entries */ 00380 TupleTableSlot *inputslot; /* current input tuple's slot */ 00381 } TupleHashTableData; 00382 00383 typedef HASH_SEQ_STATUS TupleHashIterator; 00384 00385 #define ResetTupleHashIterator(htable, iter) \ 00386 hash_seq_init(iter, (htable)->hashtab) 00387 #define ScanTupleHashTable(iter) \ 00388 ((TupleHashEntry) hash_seq_search(iter)) 00389 00390 00391 /* ---------------------------------------------------------------- 00392 * Expression State Trees 00393 * 00394 * Each executable expression tree has a parallel ExprState tree. 00395 * 00396 * Unlike PlanState, there is not an exact one-for-one correspondence between 00397 * ExprState node types and Expr node types. Many Expr node types have no 00398 * need for node-type-specific run-time state, and so they can use plain 00399 * ExprState or GenericExprState as their associated ExprState node type. 00400 * ---------------------------------------------------------------- 00401 */ 00402 00403 /* ---------------- 00404 * ExprState node 00405 * 00406 * ExprState is the common superclass for all ExprState-type nodes. 00407 * 00408 * It can also be instantiated directly for leaf Expr nodes that need no 00409 * local run-time state (such as Var, Const, or Param). 00410 * 00411 * To save on dispatch overhead, each ExprState node contains a function 00412 * pointer to the routine to execute to evaluate the node. 00413 * ---------------- 00414 */ 00415 00416 typedef struct ExprState ExprState; 00417 00418 typedef Datum (*ExprStateEvalFunc) (ExprState *expression, 00419 ExprContext *econtext, 00420 bool *isNull, 00421 ExprDoneCond *isDone); 00422 00423 struct ExprState 00424 { 00425 NodeTag type; 00426 Expr *expr; /* associated Expr node */ 00427 ExprStateEvalFunc evalfunc; /* routine to run to execute node */ 00428 }; 00429 00430 /* ---------------- 00431 * GenericExprState node 00432 * 00433 * This is used for Expr node types that need no local run-time state, 00434 * but have one child Expr node. 00435 * ---------------- 00436 */ 00437 typedef struct GenericExprState 00438 { 00439 ExprState xprstate; 00440 ExprState *arg; /* state of my child node */ 00441 } GenericExprState; 00442 00443 /* ---------------- 00444 * AggrefExprState node 00445 * ---------------- 00446 */ 00447 typedef struct AggrefExprState 00448 { 00449 ExprState xprstate; 00450 ExprState *target; /* state of my child node */ 00451 int aggno; /* ID number for agg within its plan node */ 00452 } AggrefExprState; 00453 00454 /* ---------------- 00455 * ArrayRefExprState node 00456 * 00457 * Note: array types can be fixed-length (typlen > 0), but only when the 00458 * element type is itself fixed-length. Otherwise they are varlena structures 00459 * and have typlen = -1. In any case, an array type is never pass-by-value. 00460 * ---------------- 00461 */ 00462 typedef struct ArrayRefExprState 00463 { 00464 ExprState xprstate; 00465 List *refupperindexpr; /* states for child nodes */ 00466 List *reflowerindexpr; 00467 ExprState *refexpr; 00468 ExprState *refassgnexpr; 00469 int16 refattrlength; /* typlen of array type */ 00470 int16 refelemlength; /* typlen of the array element type */ 00471 bool refelembyval; /* is the element type pass-by-value? */ 00472 char refelemalign; /* typalign of the element type */ 00473 } ArrayRefExprState; 00474 00475 /* ---------------- 00476 * FuncExprState node 00477 * 00478 * Although named for FuncExpr, this is also used for OpExpr, DistinctExpr, 00479 * and NullIf nodes; be careful to check what xprstate.expr is actually 00480 * pointing at! 00481 * ---------------- 00482 */ 00483 typedef struct FuncExprState 00484 { 00485 ExprState xprstate; 00486 List *args; /* states of argument expressions */ 00487 00488 /* 00489 * Function manager's lookup info for the target function. If func.fn_oid 00490 * is InvalidOid, we haven't initialized it yet. 00491 */ 00492 FmgrInfo func; 00493 00494 /* 00495 * We also need to store argument values across calls when evaluating a 00496 * function-returning-set. 00497 * 00498 * setArgsValid is true when we are evaluating a set-valued function and 00499 * we are in the middle of a call series; we want to pass the same 00500 * argument values to the function again (and again, until it returns 00501 * ExprEndResult). 00502 */ 00503 bool setArgsValid; 00504 00505 /* 00506 * Flag to remember whether we found a set-valued argument to the 00507 * function. This causes the function result to be a set as well. Valid 00508 * only when setArgsValid is true. 00509 */ 00510 bool setHasSetArg; /* some argument returns a set */ 00511 00512 /* 00513 * Flag to remember whether we have registered a shutdown callback for 00514 * this FuncExprState. We do so only if setArgsValid has been true at 00515 * least once (since all the callback is for is to clear setArgsValid). 00516 */ 00517 bool shutdown_reg; /* a shutdown callback is registered */ 00518 00519 /* 00520 * Current argument data for a set-valued function; contains valid data 00521 * only if setArgsValid is true. 00522 */ 00523 FunctionCallInfoData setArgs; 00524 } FuncExprState; 00525 00526 /* ---------------- 00527 * ScalarArrayOpExprState node 00528 * 00529 * This is a FuncExprState plus some additional data. 00530 * ---------------- 00531 */ 00532 typedef struct ScalarArrayOpExprState 00533 { 00534 FuncExprState fxprstate; 00535 /* Cached info about array element type */ 00536 Oid element_type; 00537 int16 typlen; 00538 bool typbyval; 00539 char typalign; 00540 } ScalarArrayOpExprState; 00541 00542 /* ---------------- 00543 * BoolExprState node 00544 * ---------------- 00545 */ 00546 typedef struct BoolExprState 00547 { 00548 ExprState xprstate; 00549 List *args; /* states of argument expression(s) */ 00550 } BoolExprState; 00551 00552 /* ---------------- 00553 * SubPlanState node 00554 * ---------------- 00555 */ 00556 typedef struct SubPlanState 00557 { 00558 ExprState xprstate; 00559 EState *sub_estate; /* subselect plan has its own EState */ 00560 struct PlanState *planstate; /* subselect plan's state tree */ 00561 List *exprs; /* states of combining expression(s) */ 00562 List *args; /* states of argument expression(s) */ 00563 bool needShutdown; /* TRUE = need to shutdown subplan */ 00564 HeapTuple curTuple; /* copy of most recent tuple from subplan */ 00565 /* these are used when hashing the subselect's output: */ 00566 ProjectionInfo *projLeft; /* for projecting lefthand exprs */ 00567 ProjectionInfo *projRight; /* for projecting subselect output */ 00568 TupleHashTable hashtable; /* hash table for no-nulls subselect rows */ 00569 TupleHashTable hashnulls; /* hash table for rows with null(s) */ 00570 bool havehashrows; /* TRUE if hashtable is not empty */ 00571 bool havenullrows; /* TRUE if hashnulls is not empty */ 00572 MemoryContext tablecxt; /* memory context containing tables */ 00573 ExprContext *innerecontext; /* working context for comparisons */ 00574 AttrNumber *keyColIdx; /* control data for hash tables */ 00575 FmgrInfo *eqfunctions; /* comparison functions for hash tables */ 00576 FmgrInfo *hashfunctions; /* lookup data for hash functions */ 00577 } SubPlanState; 00578 00579 /* ---------------- 00580 * FieldSelectState node 00581 * ---------------- 00582 */ 00583 typedef struct FieldSelectState 00584 { 00585 ExprState xprstate; 00586 ExprState *arg; /* input expression */ 00587 TupleDesc argdesc; /* tupdesc for most recent input */ 00588 } FieldSelectState; 00589 00590 /* ---------------- 00591 * FieldStoreState node 00592 * ---------------- 00593 */ 00594 typedef struct FieldStoreState 00595 { 00596 ExprState xprstate; 00597 ExprState *arg; /* input tuple value */ 00598 List *newvals; /* new value(s) for field(s) */ 00599 TupleDesc argdesc; /* tupdesc for most recent input */ 00600 } FieldStoreState; 00601 00602 /* ---------------- 00603 * ConvertRowtypeExprState node 00604 * ---------------- 00605 */ 00606 typedef struct ConvertRowtypeExprState 00607 { 00608 ExprState xprstate; 00609 ExprState *arg; /* input tuple value */ 00610 TupleDesc indesc; /* tupdesc for source rowtype */ 00611 TupleDesc outdesc; /* tupdesc for result rowtype */ 00612 AttrNumber *attrMap; /* indexes of input fields, or 0 for null */ 00613 Datum *invalues; /* workspace for deconstructing source */ 00614 bool *inisnull; 00615 Datum *outvalues; /* workspace for constructing result */ 00616 bool *outisnull; 00617 } ConvertRowtypeExprState; 00618 00619 /* ---------------- 00620 * CaseExprState node 00621 * ---------------- 00622 */ 00623 typedef struct CaseExprState 00624 { 00625 ExprState xprstate; 00626 ExprState *arg; /* implicit equality comparison argument */ 00627 List *args; /* the arguments (list of WHEN clauses) */ 00628 ExprState *defresult; /* the default result (ELSE clause) */ 00629 } CaseExprState; 00630 00631 /* ---------------- 00632 * CaseWhenState node 00633 * ---------------- 00634 */ 00635 typedef struct CaseWhenState 00636 { 00637 ExprState xprstate; 00638 ExprState *expr; /* condition expression */ 00639 ExprState *result; /* substitution result */ 00640 } CaseWhenState; 00641 00642 /* ---------------- 00643 * ArrayExprState node 00644 * 00645 * Note: ARRAY[] expressions always produce varlena arrays, never fixed-length 00646 * arrays. 00647 * ---------------- 00648 */ 00649 typedef struct ArrayExprState 00650 { 00651 ExprState xprstate; 00652 List *elements; /* states for child nodes */ 00653 int16 elemlength; /* typlen of the array element type */ 00654 bool elembyval; /* is the element type pass-by-value? */ 00655 char elemalign; /* typalign of the element type */ 00656 } ArrayExprState; 00657 00658 /* ---------------- 00659 * RowExprState node 00660 * ---------------- 00661 */ 00662 typedef struct RowExprState 00663 { 00664 ExprState xprstate; 00665 List *args; /* the arguments */ 00666 TupleDesc tupdesc; /* descriptor for result tuples */ 00667 } RowExprState; 00668 00669 /* ---------------- 00670 * CoalesceExprState node 00671 * ---------------- 00672 */ 00673 typedef struct CoalesceExprState 00674 { 00675 ExprState xprstate; 00676 List *args; /* the arguments */ 00677 } CoalesceExprState; 00678 00679 /* ---------------- 00680 * MinMaxExprState node 00681 * ---------------- 00682 */ 00683 typedef struct MinMaxExprState 00684 { 00685 ExprState xprstate; 00686 List *args; /* the arguments */ 00687 FmgrInfo cfunc; /* lookup info for comparison func */ 00688 } MinMaxExprState; 00689 00690 /* ---------------- 00691 * CoerceToDomainState node 00692 * ---------------- 00693 */ 00694 typedef struct CoerceToDomainState 00695 { 00696 ExprState xprstate; 00697 ExprState *arg; /* input expression */ 00698 /* Cached list of constraints that need to be checked */ 00699 List *constraints; /* list of DomainConstraintState nodes */ 00700 } CoerceToDomainState; 00701 00702 /* 00703 * DomainConstraintState - one item to check during CoerceToDomain 00704 * 00705 * Note: this is just a Node, and not an ExprState, because it has no 00706 * corresponding Expr to link to. Nonetheless it is part of an ExprState 00707 * tree, so we give it a name following the xxxState convention. 00708 */ 00709 typedef enum DomainConstraintType 00710 { 00711 DOM_CONSTRAINT_NOTNULL, 00712 DOM_CONSTRAINT_CHECK 00713 } DomainConstraintType; 00714 00715 typedef struct DomainConstraintState 00716 { 00717 NodeTag type; 00718 DomainConstraintType constrainttype; /* constraint type */ 00719 char *name; /* name of constraint (for error msgs) */ 00720 ExprState *check_expr; /* for CHECK, a boolean expression */ 00721 } DomainConstraintState; 00722 00723 00724 /* ---------------------------------------------------------------- 00725 * Executor State Trees 00726 * 00727 * An executing query has a PlanState tree paralleling the Plan tree 00728 * that describes the plan. 00729 * ---------------------------------------------------------------- 00730 */ 00731 00732 /* ---------------- 00733 * PlanState node 00734 * 00735 * We never actually instantiate any PlanState nodes; this is just the common 00736 * abstract superclass for all PlanState-type nodes. 00737 * ---------------- 00738 */ 00739 typedef struct PlanState 00740 { 00741 NodeTag type; 00742 00743 Plan *plan; /* associated Plan node */ 00744 00745 EState *state; /* at execution time, state's of individual 00746 * nodes point to one EState for the whole 00747 * top-level plan */ 00748 00749 struct Instrumentation *instrument; /* Optional runtime stats for this 00750 * plan node */ 00751 00752 /* 00753 * Common structural data for all Plan types. These links to subsidiary 00754 * state trees parallel links in the associated plan tree (except for the 00755 * subPlan list, which does not exist in the plan tree). 00756 */ 00757 List *targetlist; /* target list to be computed at this node */ 00758 List *qual; /* implicitly-ANDed qual conditions */ 00759 struct PlanState *lefttree; /* input plan tree(s) */ 00760 struct PlanState *righttree; 00761 List *initPlan; /* Init SubPlanState nodes (un-correlated expr 00762 * subselects) */ 00763 List *subPlan; /* SubPlanState nodes in my expressions */ 00764 00765 /* 00766 * State for management of parameter-change-driven rescanning 00767 */ 00768 Bitmapset *chgParam; /* set of IDs of changed Params */ 00769 00770 /* 00771 * Other run-time state needed by most if not all node types. 00772 */ 00773 TupleTableSlot *ps_OuterTupleSlot; /* slot for current "outer" tuple */ 00774 TupleTableSlot *ps_ResultTupleSlot; /* slot for my result tuples */ 00775 ExprContext *ps_ExprContext; /* node's expression-evaluation context */ 00776 ProjectionInfo *ps_ProjInfo; /* info for doing tuple projection */ 00777 bool ps_TupFromTlist;/* state flag for processing set-valued 00778 * functions in targetlist */ 00779 } PlanState; 00780 00781 /* ---------------- 00782 * these are are defined to avoid confusion problems with "left" 00783 * and "right" and "inner" and "outer". The convention is that 00784 * the "left" plan is the "outer" plan and the "right" plan is 00785 * the inner plan, but these make the code more readable. 00786 * ---------------- 00787 */ 00788 #define innerPlanState(node) (((PlanState *)(node))->righttree) 00789 #define outerPlanState(node) (((PlanState *)(node))->lefttree) 00790 00791 00792 /* ---------------- 00793 * ResultState information 00794 * ---------------- 00795 */ 00796 typedef struct ResultState 00797 { 00798 PlanState ps; /* its first field is NodeTag */ 00799 ExprState *resconstantqual; 00800 bool rs_done; /* are we done? */ 00801 bool rs_checkqual; /* do we need to check the qual? */ 00802 } ResultState; 00803 00804 /* ---------------- 00805 * AppendState information 00806 * 00807 * nplans how many plans are in the list 00808 * whichplan which plan is being executed (0 .. n-1) 00809 * firstplan first plan to execute (usually 0) 00810 * lastplan last plan to execute (usually n-1) 00811 * ---------------- 00812 */ 00813 typedef struct AppendState 00814 { 00815 PlanState ps; /* its first field is NodeTag */ 00816 PlanState **appendplans; /* array of PlanStates for my inputs */ 00817 int as_nplans; 00818 int as_whichplan; 00819 int as_firstplan; 00820 int as_lastplan; 00821 } AppendState; 00822 00823 /* ---------------- 00824 * BitmapAndState information 00825 * ---------------- 00826 */ 00827 typedef struct BitmapAndState 00828 { 00829 PlanState ps; /* its first field is NodeTag */ 00830 PlanState **bitmapplans; /* array of PlanStates for my inputs */ 00831 int nplans; /* number of input plans */ 00832 } BitmapAndState; 00833 00834 /* ---------------- 00835 * BitmapOrState information 00836 * ---------------- 00837 */ 00838 typedef struct BitmapOrState 00839 { 00840 PlanState ps; /* its first field is NodeTag */ 00841 PlanState **bitmapplans; /* array of PlanStates for my inputs */ 00842 int nplans; /* number of input plans */ 00843 } BitmapOrState; 00844 00845 /* ---------------------------------------------------------------- 00846 * Scan State Information 00847 * ---------------------------------------------------------------- 00848 */ 00849 00850 /* ---------------- 00851 * ScanState information 00852 * 00853 * ScanState extends PlanState for node types that represent 00854 * scans of an underlying relation. It can also be used for nodes 00855 * that scan the output of an underlying plan node --- in that case, 00856 * only ScanTupleSlot is actually useful, and it refers to the tuple 00857 * retrieved from the subplan. 00858 * 00859 * currentRelation relation being scanned (NULL if none) 00860 * currentScanDesc current scan descriptor for scan (NULL if none) 00861 * ScanTupleSlot pointer to slot in tuple table holding scan tuple 00862 * ---------------- 00863 */ 00864 typedef struct ScanState 00865 { 00866 PlanState ps; /* its first field is NodeTag */ 00867 Relation ss_currentRelation; 00868 HeapScanDesc ss_currentScanDesc; 00869 TupleTableSlot *ss_ScanTupleSlot; 00870 } ScanState; 00871 00872 /* 00873 * SeqScan uses a bare ScanState as its state node, since it needs 00874 * no additional fields. 00875 */ 00876 typedef ScanState SeqScanState; 00877 00878 /* ---------------- 00879 * IndexScanState information 00880 * 00881 * indexqualorig execution state for indexqualorig expressions 00882 * ScanKeys Skey structures to scan index rel 00883 * NumScanKeys number of Skey structs 00884 * RuntimeKeyInfo array of exprstates for Skeys 00885 * that will be evaluated at runtime 00886 * RuntimeContext expr context for evaling runtime Skeys 00887 * RuntimeKeysReady true if runtime Skeys have been computed 00888 * RelationDesc index relation descriptor 00889 * ScanDesc index scan descriptor 00890 * ---------------- 00891 */ 00892 typedef struct IndexScanState 00893 { 00894 ScanState ss; /* its first field is NodeTag */ 00895 List *indexqualorig; 00896 ScanKey iss_ScanKeys; 00897 int iss_NumScanKeys; 00898 ExprState **iss_RuntimeKeyInfo; 00899 ExprContext *iss_RuntimeContext; 00900 bool iss_RuntimeKeysReady; 00901 Relation iss_RelationDesc; 00902 IndexScanDesc iss_ScanDesc; 00903 } IndexScanState; 00904 00905 /* ---------------- 00906 * BitmapIndexScanState information 00907 * 00908 * result bitmap to return output into, or NULL 00909 * ScanKeys Skey structures to scan index rel 00910 * NumScanKeys number of Skey structs 00911 * RuntimeKeyInfo array of exprstates for Skeys 00912 * that will be evaluated at runtime 00913 * RuntimeContext expr context for evaling runtime Skeys 00914 * RuntimeKeysReady true if runtime Skeys have been computed 00915 * RelationDesc index relation descriptor 00916 * ScanDesc index scan descriptor 00917 * ---------------- 00918 */ 00919 typedef struct BitmapIndexScanState 00920 { 00921 ScanState ss; /* its first field is NodeTag */ 00922 TIDBitmap *biss_result; 00923 ScanKey biss_ScanKeys; 00924 int biss_NumScanKeys; 00925 ExprState **biss_RuntimeKeyInfo; 00926 ExprContext *biss_RuntimeContext; 00927 bool biss_RuntimeKeysReady; 00928 Relation biss_RelationDesc; 00929 IndexScanDesc biss_ScanDesc; 00930 } BitmapIndexScanState; 00931 00932 /* ---------------- 00933 * BitmapHeapScanState information 00934 * 00935 * bitmapqualorig execution state for bitmapqualorig expressions 00936 * tbm bitmap obtained from child index scan(s) 00937 * tbmres current-page data 00938 * curslot current tbmres index or tuple offset on page 00939 * minslot lowest tbmres index or tuple offset to try 00940 * maxslot highest tbmres index or tuple offset to try 00941 * ---------------- 00942 */ 00943 typedef struct BitmapHeapScanState 00944 { 00945 ScanState ss; /* its first field is NodeTag */ 00946 List *bitmapqualorig; 00947 TIDBitmap *tbm; 00948 TBMIterateResult *tbmres; 00949 int curslot; 00950 int minslot; 00951 int maxslot; 00952 } BitmapHeapScanState; 00953 00954 /* ---------------- 00955 * TidScanState information 00956 * 00957 * NumTids number of tids in this scan 00958 * TidPtr current tid in use 00959 * TidList evaluated item pointers 00960 * ---------------- 00961 */ 00962 typedef struct TidScanState 00963 { 00964 ScanState ss; /* its first field is NodeTag */ 00965 List *tss_tideval; /* list of ExprState nodes */ 00966 int tss_NumTids; 00967 int tss_TidPtr; 00968 int tss_MarkTidPtr; 00969 ItemPointerData *tss_TidList; 00970 HeapTupleData tss_htup; 00971 } TidScanState; 00972 00973 /* ---------------- 00974 * SubqueryScanState information 00975 * 00976 * SubqueryScanState is used for scanning a sub-query in the range table. 00977 * The sub-query will have its own EState, which we save here. 00978 * ScanTupleSlot references the current output tuple of the sub-query. 00979 * 00980 * SubEState exec state for sub-query 00981 * ---------------- 00982 */ 00983 typedef struct SubqueryScanState 00984 { 00985 ScanState ss; /* its first field is NodeTag */ 00986 PlanState *subplan; 00987 EState *sss_SubEState; 00988 } SubqueryScanState; 00989 00990 /* ---------------- 00991 * FunctionScanState information 00992 * 00993 * Function nodes are used to scan the results of a 00994 * function appearing in FROM (typically a function returning set). 00995 * 00996 * tupdesc expected return tuple description 00997 * tuplestorestate private state of tuplestore.c 00998 * funcexpr state for function expression being evaluated 00999 * ---------------- 01000 */ 01001 typedef struct FunctionScanState 01002 { 01003 ScanState ss; /* its first field is NodeTag */ 01004 TupleDesc tupdesc; 01005 Tuplestorestate *tuplestorestate; 01006 ExprState *funcexpr; 01007 } FunctionScanState; 01008 01009 /* ---------------------------------------------------------------- 01010 * Join State Information 01011 * ---------------------------------------------------------------- 01012 */ 01013 01014 /* ---------------- 01015 * JoinState information 01016 * 01017 * Superclass for state nodes of join plans. 01018 * ---------------- 01019 */ 01020 typedef struct JoinState 01021 { 01022 PlanState ps; 01023 JoinType jointype; 01024 List *joinqual; /* JOIN quals (in addition to ps.qual) */ 01025 } JoinState; 01026 01027 /* ---------------- 01028 * NestLoopState information 01029 * 01030 * NeedNewOuter true if need new outer tuple on next call 01031 * MatchedOuter true if found a join match for current outer tuple 01032 * NullInnerTupleSlot prepared null tuple for left outer joins 01033 * ---------------- 01034 */ 01035 typedef struct NestLoopState 01036 { 01037 JoinState js; /* its first field is NodeTag */ 01038 bool nl_NeedNewOuter; 01039 bool nl_MatchedOuter; 01040 TupleTableSlot *nl_NullInnerTupleSlot; 01041 } NestLoopState; 01042 01043 /* ---------------- 01044 * MergeJoinState information 01045 * 01046 * NumClauses number of mergejoinable join clauses 01047 * Clauses info for each mergejoinable clause 01048 * JoinState current "state" of join. see execdefs.h 01049 * FillOuter true if should emit unjoined outer tuples anyway 01050 * FillInner true if should emit unjoined inner tuples anyway 01051 * MatchedOuter true if found a join match for current outer tuple 01052 * MatchedInner true if found a join match for current inner tuple 01053 * OuterTupleSlot slot in tuple table for cur outer tuple 01054 * InnerTupleSlot slot in tuple table for cur inner tuple 01055 * MarkedTupleSlot slot in tuple table for marked tuple 01056 * NullOuterTupleSlot prepared null tuple for right outer joins 01057 * NullInnerTupleSlot prepared null tuple for left outer joins 01058 * OuterEContext workspace for computing outer tuple's join values 01059 * InnerEContext workspace for computing inner tuple's join values 01060 * ---------------- 01061 */ 01062 /* private in nodeMergejoin.c: */ 01063 typedef struct MergeJoinClauseData *MergeJoinClause; 01064 01065 typedef struct MergeJoinState 01066 { 01067 JoinState js; /* its first field is NodeTag */ 01068 int mj_NumClauses; 01069 MergeJoinClause mj_Clauses; /* array of length mj_NumClauses */ 01070 int mj_JoinState; 01071 bool mj_FillOuter; 01072 bool mj_FillInner; 01073 bool mj_MatchedOuter; 01074 bool mj_MatchedInner; 01075 TupleTableSlot *mj_OuterTupleSlot; 01076 TupleTableSlot *mj_InnerTupleSlot; 01077 TupleTableSlot *mj_MarkedTupleSlot; 01078 TupleTableSlot *mj_NullOuterTupleSlot; 01079 TupleTableSlot *mj_NullInnerTupleSlot; 01080 ExprContext *mj_OuterEContext; 01081 ExprContext *mj_InnerEContext; 01082 } MergeJoinState; 01083 01084 /* ---------------- 01085 * HashJoinState information 01086 * 01087 * hj_HashTable hash table for the hashjoin 01088 * (NULL if table not built yet) 01089 * hj_CurHashValue hash value for current outer tuple 01090 * hj_CurBucketNo bucket# for current outer tuple 01091 * hj_CurTuple last inner tuple matched to current outer 01092 * tuple, or NULL if starting search 01093 * (CurHashValue, CurBucketNo and CurTuple are 01094 * undefined if OuterTupleSlot is empty!) 01095 * hj_OuterHashKeys the outer hash keys in the hashjoin condition 01096 * hj_InnerHashKeys the inner hash keys in the hashjoin condition 01097 * hj_HashOperators the join operators in the hashjoin condition 01098 * hj_OuterTupleSlot tuple slot for outer tuples 01099 * hj_HashTupleSlot tuple slot for hashed tuples 01100 * hj_NullInnerTupleSlot prepared null tuple for left outer joins 01101 * hj_FirstOuterTupleSlot first tuple retrieved from outer plan 01102 * hj_NeedNewOuter true if need new outer tuple on next call 01103 * hj_MatchedOuter true if found a join match for current outer 01104 * hj_OuterNotEmpty true if outer relation known not empty 01105 * ---------------- 01106 */ 01107 01108 /* these structs are defined in executor/hashjoin.h: */ 01109 typedef struct HashJoinTupleData *HashJoinTuple; 01110 typedef struct HashJoinTableData *HashJoinTable; 01111 01112 typedef struct HashJoinState 01113 { 01114 JoinState js; /* its first field is NodeTag */ 01115 List *hashclauses; /* list of ExprState nodes */ 01116 HashJoinTable hj_HashTable; 01117 uint32 hj_CurHashValue; 01118 int hj_CurBucketNo; 01119 HashJoinTuple hj_CurTuple; 01120 List *hj_OuterHashKeys; /* list of ExprState nodes */ 01121 List *hj_InnerHashKeys; /* list of ExprState nodes */ 01122 List *hj_HashOperators; /* list of operator OIDs */ 01123 TupleTableSlot *hj_OuterTupleSlot; 01124 TupleTableSlot *hj_HashTupleSlot; 01125 TupleTableSlot *hj_NullInnerTupleSlot; 01126 TupleTableSlot *hj_FirstOuterTupleSlot; 01127 bool hj_NeedNewOuter; 01128 bool hj_MatchedOuter; 01129 bool hj_OuterNotEmpty; 01130 } HashJoinState; 01131 01132 01133 /* ---------------------------------------------------------------- 01134 * Materialization State Information 01135 * ---------------------------------------------------------------- 01136 */ 01137 01138 /* ---------------- 01139 * MaterialState information 01140 * 01141 * materialize nodes are used to materialize the results 01142 * of a subplan into a temporary file. 01143 * 01144 * ss.ss_ScanTupleSlot refers to output of underlying plan. 01145 * ---------------- 01146 */ 01147 typedef struct MaterialState 01148 { 01149 ScanState ss; /* its first field is NodeTag */ 01150 void *tuplestorestate; /* private state of tuplestore.c */ 01151 bool eof_underlying; /* reached end of underlying plan? */ 01152 } MaterialState; 01153 01154 /* ---------------- 01155 * SortState information 01156 * ---------------- 01157 */ 01158 typedef struct SortState 01159 { 01160 ScanState ss; /* its first field is NodeTag */ 01161 bool sort_Done; /* sort completed yet? */ 01162 void *tuplesortstate; /* private state of tuplesort.c */ 01163 } SortState; 01164 01165 /* --------------------- 01166 * GroupState information 01167 * ------------------------- 01168 */ 01169 typedef struct GroupState 01170 { 01171 ScanState ss; /* its first field is NodeTag */ 01172 FmgrInfo *eqfunctions; /* per-field lookup data for equality fns */ 01173 bool grp_done; /* indicates completion of Group scan */ 01174 } GroupState; 01175 01176 /* --------------------- 01177 * AggState information 01178 * 01179 * ss.ss_ScanTupleSlot refers to output of underlying plan. 01180 * 01181 * Note: ss.ps.ps_ExprContext contains ecxt_aggvalues and 01182 * ecxt_aggnulls arrays, which hold the computed agg values for the current 01183 * input group during evaluation of an Agg node's output tuple(s). We 01184 * create a second ExprContext, tmpcontext, in which to evaluate input 01185 * expressions and run the aggregate transition functions. 01186 * ------------------------- 01187 */ 01188 /* these structs are private in nodeAgg.c: */ 01189 typedef struct AggStatePerAggData *AggStatePerAgg; 01190 typedef struct AggStatePerGroupData *AggStatePerGroup; 01191 01192 typedef struct AggState 01193 { 01194 ScanState ss; /* its first field is NodeTag */ 01195 List *aggs; /* all Aggref nodes in targetlist & quals */ 01196 int numaggs; /* length of list (could be zero!) */ 01197 FmgrInfo *eqfunctions; /* per-grouping-field equality fns */ 01198 FmgrInfo *hashfunctions; /* per-grouping-field hash fns */ 01199 AggStatePerAgg peragg; /* per-Aggref information */ 01200 MemoryContext aggcontext; /* memory context for long-lived data */ 01201 ExprContext *tmpcontext; /* econtext for input expressions */ 01202 bool agg_done; /* indicates completion of Agg scan */ 01203 /* these fields are used in AGG_PLAIN and AGG_SORTED modes: */ 01204 AggStatePerGroup pergroup; /* per-Aggref-per-group working state */ 01205 HeapTuple grp_firstTuple; /* copy of first tuple of current group */ 01206 /* these fields are used in AGG_HASHED mode: */ 01207 TupleHashTable hashtable; /* hash table with one entry per group */ 01208 bool table_filled; /* hash table filled yet? */ 01209 TupleHashIterator hashiter; /* for iterating through hash table */ 01210 } AggState; 01211 01212 /* ---------------- 01213 * UniqueState information 01214 * 01215 * Unique nodes are used "on top of" sort nodes to discard 01216 * duplicate tuples returned from the sort phase. Basically 01217 * all it does is compare the current tuple from the subplan 01218 * with the previously fetched tuple (stored in its result slot). 01219 * If the two are identical in all interesting fields, then 01220 * we just fetch another tuple from the sort and try again. 01221 * ---------------- 01222 */ 01223 typedef struct UniqueState 01224 { 01225 PlanState ps; /* its first field is NodeTag */ 01226 FmgrInfo *eqfunctions; /* per-field lookup data for equality fns */ 01227 MemoryContext tempContext; /* short-term context for comparisons */ 01228 } UniqueState; 01229 01230 /* ---------------- 01231 * HashState information 01232 * ---------------- 01233 */ 01234 typedef struct HashState 01235 { 01236 PlanState ps; /* its first field is NodeTag */ 01237 HashJoinTable hashtable; /* hash table for the hashjoin */ 01238 List *hashkeys; /* list of ExprState nodes */ 01239 /* hashkeys is same as parent's hj_InnerHashKeys */ 01240 } HashState; 01241 01242 /* ---------------- 01243 * SetOpState information 01244 * 01245 * SetOp nodes are used "on top of" sort nodes to discard 01246 * duplicate tuples returned from the sort phase. These are 01247 * more complex than a simple Unique since we have to count 01248 * how many duplicates to return. 01249 * ---------------- 01250 */ 01251 typedef struct SetOpState 01252 { 01253 PlanState ps; /* its first field is NodeTag */ 01254 FmgrInfo *eqfunctions; /* per-field lookup data for equality fns */ 01255 bool subplan_done; /* has subplan returned EOF? */ 01256 long numLeft; /* number of left-input dups of cur group */ 01257 long numRight; /* number of right-input dups of cur group */ 01258 long numOutput; /* number of dups left to output */ 01259 MemoryContext tempContext; /* short-term context for comparisons */ 01260 } SetOpState; 01261 01262 /* ---------------- 01263 * LimitState information 01264 * 01265 * Limit nodes are used to enforce LIMIT/OFFSET clauses. 01266 * They just select the desired subrange of their subplan's output. 01267 * 01268 * offset is the number of initial tuples to skip (0 does nothing). 01269 * count is the number of tuples to return after skipping the offset tuples. 01270 * If no limit count was specified, count is undefined and noCount is true. 01271 * When lstate == LIMIT_INITIAL, offset/count/noCount haven't been set yet. 01272 * ---------------- 01273 */ 01274 typedef enum 01275 { 01276 LIMIT_INITIAL, /* initial state for LIMIT node */ 01277 LIMIT_EMPTY, /* there are no returnable rows */ 01278 LIMIT_INWINDOW, /* have returned a row in the window */ 01279 LIMIT_SUBPLANEOF, /* at EOF of subplan (within window) */ 01280 LIMIT_WINDOWEND, /* stepped off end of window */ 01281 LIMIT_WINDOWSTART /* stepped off beginning of window */ 01282 } LimitStateCond; 01283 01284 typedef struct LimitState 01285 { 01286 PlanState ps; /* its first field is NodeTag */ 01287 ExprState *limitOffset; /* OFFSET parameter, or NULL if none */ 01288 ExprState *limitCount; /* COUNT parameter, or NULL if none */ 01289 long offset; /* current OFFSET value */ 01290 long count; /* current COUNT, if any */ 01291 bool noCount; /* if true, ignore count */ 01292 LimitStateCond lstate; /* state machine status, as above */ 01293 long position; /* 1-based index of last tuple returned */ 01294 TupleTableSlot *subSlot; /* tuple last obtained from subplan */ 01295 } LimitState; 01296 01297 #endif /* EXECNODES_H */